
2025 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Evaluation of Low-Frequency Feature Restriction
and Average Pooling for Acoustic Scene

Classification under Unseen-City Conditions
Takao Kawamura∗, Masayuki Sera∗, and Nobutaka Ono∗

∗ Tokyo Metropolitan University, Japan

Abstract—In this report, we describe our submitted system
for the APSIPA ASC 2025 Grand Challenge, targeting improved
acoustic scene classification (ASC) with enhanced generalization
across cities. To evaluate robustness to unseen cities, we adopt
a city-disjoint cross-validation scheme by splitting the labeled
development set into two folds with non-overlapping training and
testing cities, based on the provided metadata of city information.
To reduce the risk of overfitting with limited labeled data,
we restrict log-mel spectrogram inputs to low-frequency bands,
where much of the scene-discriminative information is expected
to reside. We then replace the temporal max pooling in the
baseline with average pooling, allowing information from all time
frames to contribute to the final representation. Experimental
results show that average pooling improves classification accuracy
for unseen cities, and that combining it with low-frequency
restriction achieves about an 8-point improvement in macro-
average accuracy over the baseline in the best configuration.

I. INTRODUCTION

Acoustic Scene Classification (ASC) is the task of iden-
tifying acoustic scenes characterized by their surrounding
sound environments, such as streets, squares, and restaurants.
ASC has potential applications in life-logging, environmental
monitoring, and smart home technologies [1]. It has been ex-
tensively investigated as one of the core tasks in the Detection
and Classification of Acoustic Scenes and Events (DCASE)
Challenge [2], [3].

Recent advances in ASC have been driven by deep learning
methods, which have greatly improved performance. However,
deep learning-based ASC models face two major challenges:
domain shift [4]–[7], where mismatches between training and
testing data degrade performance, and scarcity of labeled data,
which limits the effectiveness of supervised training. Domain
shift arises from differences in recording environments includ-
ing cultural and infrastructural variations across cities, which
make generalization difficult. Semi-supervised learning [8] has
been explored to alleviate the lack of labeled data, but its ef-
fectiveness depends on the model performance, and evaluating
generalization under domain shift remains challenging.

To evaluate robustness to domain shift, we adopt a city-
disjoint cross-validation scheme, splitting the labeled devel-
opment set into two folds with non-overlapping training and
testing cities based on the provided city metadata. This scheme
provides a foundation for selecting and validating robust
approaches.

The characteristics of our approach are summarized as
follows. First, we design a dataset split based on city metadata
to evaluate model generalization to unseen cities. Second, we
reduce the complexity of the input by using only the low-
frequency range, where much of the informative content (e.g.,
speech in restaurants or announcements in airports) is expected
to reside. Third, we replace max pooling in the baseline
with average pooling to explicitly aggregate information from
all frames. In evaluation experiments, we confirm that our
approach achieves an 8-point improvement over the baseline
on unseen city environments.

II. BASELINE MODEL ARCHITECTURE

The architecture of the ASC model used in the baseline is the
Squeeze-and-Excitation and Transformer (SE-Trans) [9]. The
network architecture of the baseline is shown in Table I. In the
baseline of the APSIPA grand challenge, the baseline adopts
the best configuration of the SE-Trans from [9]. The model
input is a log-mel spectrogram with a shape of T×F×1, where
T and F denote the number of time frames and frequency
bins, respectively. The model consists of two SE blocks and
one Transformer encoder, and each SE block consists of two
convolutional layers with the same channels and kernel sizes
of 3 × 3. The number of channels of the first and second SE
blocks is 64 and 128, respectively. An average pooling layer is
applied after each SE block with kernel sizes of 2 × 2. For the
Transformer encoder, the baseline sets eight as the number of
heads, one as the number of layers, and 32 as the number of
units of fully connected layers. The final output is obtained by
applying max aggregation across the time frames T ′, followed
by a fully connected layer.

III. PROPOSED APPROACH

A. City-Disjoint Cross-Validation Scheme

In this challenge, evaluating the generalization performance
of the model is also important. According to the task re-
quirements, the model must be assessed under domain shift,
particularly with respect to different cities. The development
dataset [10] consists of data from eight cities, while the
evaluation dataset is constructed from 12 cities, including six
seen cities that overlap with the development dataset and six



TABLE I
SHAPE TRANSITION OF THE BASELINE SE-TRANS MODEL,

WHERE SHAPES ARE REPRESENTED AS
(FRAMES × FREQUENCIES × CHANNELS) AND DIMENSIONS

OF SIZE 1 ARE OMITTED.

Module Input Shape

BatchNorm (bn0) T × F × 1
SE Block 1 (pool=2,2) (T/2)× (F/2)× 64
SE Block 2 (pool=2,2) (T/4)× (F/2)× 128
Adaptive AvgPoolinga (T ′ = 16) T ′ × 128
Transformer Encoder T ′ × 128
Temporal Max Pooling 128
Fully Connected Layer C

a nn.AdaptiveAvgPool2d module in PyTorch.

unseen cities that are not used during training. This design
enables a more comprehensive evaluation under domain shift.

To develop and validate our approach, we adopt a city-
disjoint cross-validation scheme. In this scheme, we split the
labeled development set into two folds. The folds are designed
to ensure that the cities used for training and testing are
disjoint, while the training and validation sets consist of data
from the same cities. The dataset split is summarized in Fig. 1.
Here, note that since the labels “Square” and “Street” were
only available in the city “Xi’an”, they are not included in
this evaluation.

B. Low-Pass Filtering

The labeled dataset is limited in size, and as described in
the previous section, we further split it, resulting in an even
smaller amount of labeled data. This scarcity of data increases
the risk of overfitting. To mitigate this, we aim to reduce
the complexity of the input data. In this study, we restrict
the input features to the low-frequency range, where much
of the essential information for ASC is expected to reside. For
example, much of the content in sounds such as conversations
in restaurants or announcements in airports is believed to
be concentrated in the low-frequency band. This restriction
suppresses redundancy and is expected to mitigate overfitting.

For dimensionality reduction, we adopt a slicing method
along the frequency axis, where the dimension F is reduced
to a smaller value F̃ , resulting in a shape of T × F̃ × 1.
This approach has the advantage that the parameters of the
pretrained model can be directly used as initialization during
fine-tuning. The only parameters that depend on the frequency
dimension are those of the first batch normalization layer (bn0
in Table I). By slicing the input features to match the reduced
frequency dimension, the learned statistics in the first batch
normalization layer can also be aligned with this dimension,
allowing them to be reused effectively.

C. Temporal Average Pooling

We focus on the feature aggregation method applied to the
input of the final fully connected layer, which outputs the
final predictions. In the baseline system, max pooling, which
extracts the maximum value for each feature dimension across
time frames, is employed. Since this operation processes each

feature dimension independently, it may not sufficiently reflect
the overall temporal structure of the frames.

In this report, we introduce feature aggregation methods that
explicitly take all time frames into account. Specifically, we
investigate two approaches: simple averaging and weighted
averaging. In the weighted averaging approach, the weights
of each frame are calculated through a fully connected layer,
and the features are aggregated based on these weights. This
design allows information from all time frames to contribute to
the final representation. In the experiments, we compare the
baseline max pooling with the two pooling methods, simple
average pooling and learnable weighted averaging.

IV. EXPERIMENT

A. Setup

We used the development dataset provided in the APSIPA
Grand Challenge [9], [10]. All recordings were resampled to a
sampling rate of 44,100 Hz. The short-time Fourier transform
(STFT) was computed using a 40-ms Hanning window with a
20-ms hop size. A set of 64 mel-filter banks was then applied
to the spectrograms, followed by a logarithmic operation to
obtain log-mel spectrograms. Each log-mel spectrogram had
a shape of T × F = 500 × 64. For fine-tuning the baseline
model, we used the Adam optimizer with a learning rate of
0.0001 and a batch size of 32. The evaluation metric for this
challenge is macro-average accuracy, which is commonly used
in previous ASC challenges [2], [3]. This metric is calculated
as the average of the class-wise accuracies across the two folds.
It should be noted that the test data used in our experiments
differs from the official evaluation dataset provided in the
challenge.

B. Results

1) Effectiveness of Temporal Average Pooling: In this ex-
periment, we evaluated the effectiveness of temporal aggrega-
tion by comparing max pooling (baseline) with average pooling
and weighted average pooling. Tables II and III present the
comparison results averaged over two folds: one evaluated on
the same cities as used for training and the other on different
cities. The results show that, compared to the baseline, the
proposed methods improve the average accuracy by 5 points
on the same cities and by 3 points on the different cities. These
findings confirm the effectiveness of averaging across the
temporal dimension. However, the difference between average
pooling and weighted average pooling was small. Therefore,
we employ average pooling in the subsequent ablation study
on low-pass filtering (i.e., varying F̃ ), which is simple and
does not necessitate additional learned parameters.

2) Effect of Low-Pass Filtering on Model Performance: In
this experiment, we conducted an ablation study on the input
feature dimensions, specifically varying F̃ , the parameter that
controls the cutoff frequency in low-pass filtering (described
in Sec. III-B). Table IV shows the results of the evaluation
of different cutoff bands for low-pass filtering. The number
of frequency bins F̃ was set from 8 to 64 in increments of
8. Here, F̃ = 64 corresponds to using the full frequency
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location Airport Bar Bus Site Metro Square Restaurant Mall Street Park Total
Jinan 0 0 0 94 0 0 0 0 0 0 94
Shangrao 0 0 100 0 0 0 0 0 0 0 100
Chongqing 0 80 0 0 0 0 0 0 0 52 132
Xi'an 113 0 0 0 109 174 101 81 143 55 776
Hefei 107 0 88 0 0 0 0 0 0 0 195
Liupanshui 0 0 0 0 0 0 72 0 0 0 72
Luoyang 0 85 0 79 0 0 0 32 0 41 237
Shanghai 0 0 0 0 100 0 0 34 0 0 134
Total 220 165 188 173 209 174 173 147 143 148 1740
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Fig. 1. Class-wise Sample Counts for the Two-Fold Cross-Validation Setting (Labeled Data)

TABLE II
COMPARISON OF ACCURACY FOR EACH LABEL ON THE VALIDATION SET

(SAME CITY)

Max Pool. Avg. Pool. Weighted
Avg. Pool.

Bus 87.5% 94.8% 92.7%
Airport 93.8% 91.7% 89.6%
Metro 94.7% 94.7% 94.7%
Resto 89.0% 96.2% 93.8%
Mall 87.5% 91.7% 91.7%
Park 82.8% 100.0% 100.0%
Site 87.8% 97.2% 97.2%
Bar 88.6% 100.0% 94.3%
Avg. 89.0% 95.8% 94.2%

TABLE III
COMPARISON OF ACCURACY FOR EACH LABEL ON THE TEST SET

(DIFFERENT CITY)

Max Pool. Avg. Pool. Weighted
Avg. Pool.

Bus 69.6% 70.5% 73.1%
Airport 52.5% 46.9% 45.9%
Metro 64.9% 71.4% 68.9%
Resto 1.0% 3.5% 3.2%
Mall 54.5% 49.6% 46.2%
Park 28.3% 29.6% 33.1%
Site 17.5% 33.5% 36.2%
Bar 19.6% 28.2% 31.5%
Avg. 38.5% 41.6% 42.3%

range and is identical to the result of “Avg. Pool.” in Tables II
and III. On the same cities, the highest average accuracy was
achieved with F̃ = 64, whereas on the different cities, the
highest average accuracy was obtained with F̃ = 24. These
results suggest that limiting the number of frequency bins can
improve classification performance for unseen cities. Among
all settings, the highest mean of the two average accuracies
was observed with F̃ = 24. Although “Square” and “Street”
could not be evaluated, we trained the average pooling model
with F̃ = 24 using the labeled data in the development dataset
and submitted this model.

V. CONCLUSIONS

In this report, we described our submitted system for the
APSIPA ASC 2025 Grand Challenge. To evaluate generaliza-
tion across cities, we adopted a city-disjoint cross-validation

TABLE IV
EVALUATION OF DIFFERENT CUTOFF BANDS FOR LOW-PASS FILTERING

F̃ macro Acc. (Same) macro Acc. (Diff.) Ave.

8 81.7% 37.9% 59.8%
16 86.8% 41.7% 64.2%
24 90.8% 46.9% 68.8%
32 88.3% 44.4% 66.4%
40 92.7% 43.5% 68.1%
48 93.8% 43.4% 68.6%
56 92.7% 40.2% 66.5%
64 95.8% 41.6% 68.7%

scheme based on the provided metadata of city information.
We split the labeled development set into two folds with
non-overlapping training and testing cities. To reduce the
risk of overfitting, we utilized only the low-frequency bands
to reduce the complexity of the model input. In addition,
we replaced max pooling with average pooling to explicitly
aggregate information across all time frames. Experimental
results demonstrated that the proposed approach consistently
outperformed the baseline, achieving approximately an 8-point
improvement in accuracy on unseen test environments. These
findings suggest that reducing the complexity of the model
input and effectively aggregating temporal information are
effective strategies for enhancing the robustness to unseen
cities.
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